Bandits with Unobserved Confounders: A Causal Approach

نویسندگان

  • Elias Bareinboim
  • Andrew Forney
  • Judea Pearl
چکیده

The Multi-Armed Bandit problem constitutes an archetypal setting for sequential decision-making, permeating multiple domains including engineering, business, and medicine. One of the hallmarks of a bandit setting is the agent’s capacity to explore its environment through active intervention, which contrasts with the ability to collect passive data by estimating associational relationships between actions and payouts. The existence of unobserved confounders, namely unmeasured variables affecting both the action and the outcome variables, implies that these two data-collection modes will in general not coincide. In this paper, we show that formalizing this distinction has conceptual and algorithmic implications to the bandit setting. The current generation of bandit algorithms implicitly try to maximize rewards based on estimation of the experimental distribution, which we show is not always the best strategy to pursue. Indeed, to achieve low regret in certain realistic classes of bandit problems (namely, in the face of unobserved confounders), both experimental and observational quantities are required by the rational agent. After this realization, we propose an optimization metric (employing both experimental and observational distributions) that bandit agents should pursue, and illustrate its benefits over traditional algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Control Outcome Calibration Approach for Causal Inference With Unobserved Confounding

Unobserved confounding can seldom be ruled out with certainty in nonexperimental studies. Negative controls are sometimes used in epidemiologic practice to detect the presence of unobserved confounding. An outcome is said to be a valid negative control variable to the extent that it is influenced by unobserved confounders of the exposure effects on the outcome in view, although not directly inf...

متن کامل

Split-door criterion for causal identification: Automatic search for natural experiments

Unobserved or unknown confounders complicate even the simplest attempts to estimate the effect of one variable on another using observational data. When cause and effect are both affected by unobserved confounders, methods based on identifying natural experiments have been proposed to eliminate confounds. However, their validity is hard to verify because they depend on assumptions about the ind...

متن کامل

Markov Decision Processes with Unobserved Confounders: A Causal Approach

Markov decision processes (MDPs) constitute one of the most general frameworks for modeling decision-making under uncertainty, being used in multiple fields, including economics, medicine, and engineering. The goal of the agent in an MDP setting is to learn more about the environment so as to optimize a certain criterion. This task is pursued through the exploration of the environment by active...

متن کامل

Causality: a Statistical View

Statistical aspects of causality are reviewed in simple form and the impact of recent work discussed. Three distinct notions of causality are set out and implications for densities and for linear dependencies explained. The importance of appreciating the possibility of effect modifiers is stressed, be they intermedi ate variables, background variables or unobserved confounders. In many contexts...

متن کامل

Identification of Time-Dependent Causal Model: A Gaussian Process Treatment

Most approaches to causal discovery assume a fixed (or time-invariant) causal model; however, in practical situations, especially in neuroscience and economics, causal relations might be timedependent for various reasons. This paper aims to identify the time-dependent causal relations from observational data. We consider general formulations for time-varying causal modeling on stochastic proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015